STAT 2593
 Lecture 020 - Probability Plots

Dylan Spicker

Probability Plots

Learning Objectives

1. Understand the construction and use of a probability plot.
2. Read and draw conclusions from probability plots.

3．ヘフックー $59.12,42826.99,0,0,0$, $35.64,50656.8,0,0,0$,
$115.94,67905.07$
$115.94,66938$ ．
$0192.49,86421$

Probability Plots

- If we want to test whether data follows a particular distribution, we can plot the histogram.

Probability Plots

- If we want to test whether data follows a particular distribution, we can plot the histogram.
- This is likely to be biased, and impacted by small deviations or choices made during plotting.

Probability Plots

- If we want to test whether data follows a particular distribution, we can plot the histogram.
- This is likely to be biased, and impacted by small deviations or choices made during plotting.
- Instead, we commonly rely on probability plots.

Probability Plots

- If we want to test whether data follows a particular distribution, we can plot the histogram.
- This is likely to be biased, and impacted by small deviations or choices made during plotting.
- Instead, we commonly rely on probability plots.
- Often these are called QQ plots instead.

Probability Plots

- If we want to test whether data follows a particular distribution, we can plot the histogram.
- This is likely to be biased, and impacted by small deviations or choices made during plotting.
- Instead, we commonly rely on probability plots.
- Often these are called QQ plots instead.
- The idea with a probability plot is that, if our data are drawn from a particular distribution, the sample percentiles should be approximately equal to the theoretical percentiles of that distribution.

Probability Plots

- If we want to test whether data follows a particular distribution, we can plot the histogram.
- This is likely to be biased, and impacted by small deviations or choices made during plotting.
- Instead, we commonly rely on probability plots.
- Often these are called QQ plots instead.
- The idea with a probability plot is that, if our data are drawn from a particular distribution, the sample percentiles should be approximately equal to the theoretical percentiles of that distribution.
- If we compare the sample percentiles to the theoretical ones we can assess whether a particular distribution fits.

Sample Percentiles

- If we order the data from smallest to largest, these values roughly correspond to the observed percentiles.

Sample Percentiles

- If we order the data from smallest to largest, these values roughly correspond to the observed percentiles.
- But which percentiles? Different sources give different answers.

Sample Percentiles

- If we order the data from smallest to largest, these values roughly correspond to the observed percentiles.
- But which percentiles? Different sources give different answers.
- In this course we will say that the i-th smallest value is the $100 \frac{i-0.5}{n}$-th percentile.

Sample Percentiles

- If we order the data from smallest to largest, these values roughly correspond to the observed percentiles.
- But which percentiles? Different sources give different answers.
- In this course we will say that the i-th smallest value is the $100 \frac{i-0.5}{n}$-th percentile.
- If $n=10$ then the smallest value corresponds to 5%, the largest value to 95%, and so on.

Sample Percentiles

- If we order the data from smallest to largest, these values roughly correspond to the observed percentiles.
- But which percentiles? Different sources give different answers.
- In this course we will say that the i-th smallest value is the $100 \frac{i-0.5}{n}$-th percentile.
- If $n=10$ then the smallest value corresponds to 5%, the largest value to 95%, and so on.
- With the sample percentiles computed, we could then compute the corresponding theoretical percentiles for the distribution that we wish to test against.

Sample Percentiles

- If we order the data from smallest to largest, these values roughly correspond to the observed percentiles.
- But which percentiles? Different sources give different answers.
- In this course we will say that the i-th smallest value is the $100 \frac{i-0.5}{n}$-th percentile.
- If $n=10$ then the smallest value corresponds to 5%, the largest value to 95%, and so on.
- With the sample percentiles computed, we could then compute the corresponding theoretical percentiles for the distribution that we wish to test against.
- If we simply plot these against one another, then data which follows the distribution should fall along a straight line.

Example 1

Normal Q-Q Plot

Example 2

Normal Q-Q Plot

Example 3

Normal Q-Q Plot

Example 4

Normal Q-Q Plot

Example 5

Normal Q-Q Plot

Summary

- Probability plots plot the sample percentiles against theoretical percentiles.
- Probability plots are useful to determine whether data (approximately) follows a given distribution.
- Data which corresponds to a given distribution should fall on an (approximately) straight line.

